Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add filters

Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.09.23296726

ABSTRACT

Background: XAV-19 is a glyco-humanized swine polyclonal antibody targeting SARS-CoV-2. The safety and clinical efficacy of XAV-19 was investigated in patients with a WHO score of 2 to 4 in the WHO 7-point ordinal scale. The activity of XAV-19 against Omicron and its subvariants was assessed in vitro. Methods: A phase II/III, multicentric randomized double-blind placebo-controlled, clinical trial was conducted to evaluate the safety and clinical efficacy of XAV-19 in inpatients with COVID-19 requiring or not oxygen therapy and outpatients not requiring oxygen (EUROXAV trial, NCT04928430). Most patients were not vaccinated. The primary endpoint was the proportion of patients with an aggravation of COVID-19 within 8 days after treatment. Binding and neutralization of Omicron or its subvariants by XAV-19 was investigated by ELISA or with a whole virus neutralization assay. Results: Patients received either 150mg of XAV-19 (N=139) or placebo (N=140). Low enrolment forced the premature trial termination. XAV-19 was well tolerated. No difference in the primary endpoint, nor in the proportion with an improvement at day 8 (secondary endpoint) was observed between the 2 groups. For patients not requiring oxygen therapy, XAV-19 reduced the time to improvement significantly (7 days vs 14 days p=0.0159). Neutralizing activity against Omicron and BA.2, BA2.12.1, BA.4/5 and BQ1.1 subvariants was shown in vitro. Conclusions: XAV-19 did not reduce the aggravation in COVID-19 patients. While it did not bring any benefit to patients requiring oxygen, it reduced the time to improvement for patients not requiring oxygen (WHO score 2 or 3). These preliminary clinical data might indicate a therapeutic potential for patients with mild to moderate COVID-19 requiring supplementation with anti-SARS-CoV-2 neutralizing antibodies.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2318185.v1

ABSTRACT

Background Mortality is high in older patients hospitalized with COVID-19. Previous studies observed lower mortality during the Omicron wave, yet no data is available on older patients. The objective was to compare in-hospital mortality between the Omicron and previous waves in older patients hospitalized with COVID-19.Methods This retrospective observational multicenter cohort study used the Greater Paris University Hospitals Group’s data warehouse (38 hospitals). Patients aged ≥ 75 years with a confirmed COVID-19 diagnosis and hospitalized from March 2020 to January 2022 were included. The study period was divided into five waves. The fifth wave (January 1st to 31st 2022) was considered as the Omicron wave as it was the predominant variant (≥ 50%), and was compared with waves 1 (March-July 2020), 2 (August-December 2020), 3 (January-June 2021) and 4 (July-December 2021). Primary outcome was in-hospital mortality. Secondary outcome was occurrence of ICU admission or in-hospital death. Multivariate logistic regression was performed, with a sensitivity analysis according to variant type.Results Of the 195,084 patients hospitalized with COVID-19, 19,909 patients aged ≥ 75 years were included (median age 85 [IQR 79–90] years, 53% women). Overall in-hospital mortality was 4,337 (22%), reaching 345 (17%) during wave 5. Waves 1 and 3 were significantly associated with increased in-hospital mortality in comparison with wave 5 (adjusted Odds Ratios aOR 1.42 [95%CI 1.21–1.66] and 1.56 [95%CI 1.33–1.83] respectively). Waves 1 to 3 were associated with an increased risk of occurrence of ICU admission or in-hospital death in comparison with wave 5: aOR 1.29 [95% CI 1.12 to 1.49] for wave 1, aOR 1.25 [95% CI 1.08 to 1.45] for wave 2 and aOR 1.56 [95% CI 1.36 to 1.79] for wave 3. Sensitivity analysis found that Omicron variant was associated with decreased mortality, in comparison with previous variants.Conclusions Mortality was lower during the 5th Omicron wave in the older population, but remained high, implying that this variant could be considered as “milder” but not “mild”. This persistently high mortality during the 5th Omicron wave highlights the importance of including older patients in clinical trials to confirm the benefit/risk balance of COVID-19 treatments in this fragile population.


Subject(s)
COVID-19 , Death
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.10.22278636

ABSTRACT

Background Although France was one of the most affected European countries by the COVID-19 pandemic in 2020, the dynamics of SARS-CoV-2 transmissions within France, Europe and worldwide remain only partially characterized during the first year of the pandemic. Methods Here, we analyzed GISAID deposited sequences from January to December 2020 (n = 638,706 sequences). To tackle the huge number of sequences without the bias of analyzing a single sequence subset, we produced 100 independent and randomly selected sequence datasets and related phylogenetic trees for different geographic scales (worldwide, European countries and French administrative regions) and time periods (first and second half of 2020). We applied a maximum likelihood discrete trait phylogeographic method to date transmission events and to estimate the geographic spread of SARS-CoV-2 to, from and within France, Europe and worldwide. Results The results unraveled two different patterns of inter- and intra-territory transmission events between the first and second half of 2020. Throughout the year, Europe was systematically associated with most of the intercontinental transmissions, for which France has played a pivotal role. SARS-CoV-2 transmissions with France were concentrated with North America and Europe (mainly Italy, Spain, United Kingdom, Belgium and Germany) during the first wave, and were limited to neighboring countries without strong intercontinental transmission during the second one. Regarding French administrative regions, the Paris area was the main source of transmissions during the first wave. But, for the second epidemic wave, it equally contributed to virus spread with Lyon and Marseille area, the two other most densely populated cities in France. Conclusion By enabling the inclusion of tens of thousands of viral sequences, this original phylogenetic strategy enabled us to robustly depict SARS-CoV-2 transmissions through France, Europe and worldwide in 2020.


Subject(s)
COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.26.477856

ABSTRACT

B.1.1.529 is the SARS-CoV-2 variant designated Omicron by the WHO in November 2021. It is a highly divergent variant with a high number of mutations, including 26-32 mutations in the spike protein among which 15 in the Receptor Binding Domain (RBD) including at the human angiotensin converting enzyme 2 (ACE-2) receptor interacting interface. Because of a decreased affinity for the ACE-2 receptor and a geometric reorganization of the S1-S2 cleavage site, the Omicron variant is predicted to not have a significant infectivity advantage over the delta variant and to be less pathogenic than Delta. However, in Omicron, neutralizing epitopes are greatly affected, suggesting that current vaccines and neutralizing monoclonal antibodies might confer reduced protection against this variant. In contrast, we and others previously demonstrated that polyclonal antibodies against SARS-CoV-2 RBD obtained from hyperimmunized animal hosts do maintain their neutralizing properties against Alpha to Delta. Here, we confirmed these findings by showing that XAV-19, a swine glyco-humanized polyclonal antibody retains full neutralizing activity against Omicron.

5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1229021.v1

ABSTRACT

Background: SARS-CoV-2 variant of concern (VOC) α spread worldwide, including in France, at the beginning of 2021. This variant was suggested to be associated with a higher risk of mortality than other variants. Little information is available in the subset of patients with severe disease admitted in the intensive care unit (ICU). We aimed to characterize the genetic diversity of SARS-CoV-2 variants isolated from patients with severe COVID-19 in order to unravel the relationships between specific viral mutations/mutational patterns and clinical outcomes. Methods: : Prospective multicentre observational cohort study. Patients aged ≥18 years admitted in 11 ICUs from Great Paris area hospitals between October 1, 2020, and May 30, 2021 (before the introduction of VOC δ (B.617.2) in France) for acute respiratory failure (SpO2≤90% and need for supplemental oxygen or ventilator support) were included. SARS-CoV-2 infection, determined by RT-PCR testing. The primary clinical endpoint was day-28 mortality. Full-length SARS-CoV-2 genomes were sequenced by means of next-generation sequencing (Illumina COVIDSeq). Results: : 413 patients were included, 183 (44.3%) had been infected with pre-existing variants, 197 (47.7%) with variant α (B.1.1.7), and 33 (8.0%) with other variants. Patients infected with pre-existing variants were significantly older (64.9±11.9 vs 60.5±11.8 years; p=0.0005); they had significantly more frequent COPD (11.5% (n=21/183) vs 4.1% (n=8/197); p=0.009), and higher SOFA score (4 [3-8] vs 3 [2-4]; 0.0002). Day-28 mortality was not different between patients infected with pre-existing, α (B.1.1.7) or other variants (31.1% (n=57/183) vs 26.2% (n=51/197) vs 30.3% (n=10/33), respectively; p=0.550). There was no association between day-28 mortality with a specific variant or the presence of specific mutations in SARS CoV-2 genome, including 17 mutations selected in the spike protein and all 1017 non-synonymous mutations detected throughout the entire viral genome. Conclusions: : At ICU admission, patients infected with pre-existing variants had a different clinical presentation from those infected with variant α (B.1.1.7) and other variants later in the course of the pandemic, but mortality did not differ between these groups. There was no association between a specific variant or SARS CoV-2 genome mutational pattern and day-28 mortality.


Subject(s)
COVID-19 , Respiratory Insufficiency
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.07.21267395

ABSTRACT

Objectives To assess the humoral and cellular responses against SARS-CoV-2 Delta variant after BNT162b2 vaccination in PLWHIV. Design Multicenter cohort study of PLWHIV, with a CD4 cell count <500/mm 3 and a viral load <50 copies/ml on stable antiretroviral therapy for at least 3 months. Methods Anti-SARS-CoV-2 Receptor Binding Domain IgG antibodies (anti-RBD IgG) were quantified and their neutralization capacity was evaluated using an ELISA (GenScript) and a virus neutralization test (VNT), against historical strain, Beta and Delta variants before vaccination (day 0) and one month after a complete vaccination schedule (M1). Results 97 patients were enrolled in the study: 85 received 2 vaccine doses (11 previous COVID-19 and 1 premature exit). The seroconversion rate in anti-RBD IgG was 97% CI95[90%; 100%] at M1. Median (IQR) anti-RBD IgG titer was 0.97 (0.97-5.3) BAU/ml at D0 and 1219 (602-1929) at M1. Neutralizing antibodies (NAbs) capacity improved between D0 (15% CI95[8%; 23%]) and M1 (94% CI95[87%; 98%]) with the GenScript assay (p<0.0001). At M1, NAbs against historical strain, Beta and Delta variants were present in 82%, 77% and 84% patients respectively. The seroconversion rate and median anti-RBD IgG were 91% and 852 BAU/ml in patients with CD4<250/mm3 (n=13) and 98% and 1270 BAU/ml in patients with CD4>250/mm 3 (n=64) (p=0.3994). 73% of patients with CD4<250 had NAbs and 97% of those with CD4>250 (p=0.0130). The NAbs against Beta variant was elicited in 50% in CD4<250 and in 81% in CD4>250 (p=0.0292). No change in CD4 + or CD8 + T cells count was observed while a decrease of CD19 + B cells count was observed (208 ±124 cells/mm3 at D0 vs 188 ±112 cells/mm3 at M1, p<0.01). No notable adverse effects or COVID-19 were reported. Conclusions These results show a high seroconversion rate with a Delta neutralization in PLWHIV patients after a complete BNT162b2 vaccination schedule.


Subject(s)
COVID-19
7.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-960512.v1

ABSTRACT

Objective: With the COVID-19 pandemic, documenting whether health care workers (HCWs) are at increased risk of SARS-CoV-2 contamination and identifying risk factors is of major concern. Methods In this multicenter prospective cohort study, HCWs from frontline departments were included in March and April 2020 and followed for 3 months. SARS-CoV-2 serology was performed at month 0 (M0), M1, and M3 and RT-PCR in case of symptoms. The primary outcome was laboratory-confirmed SARS-CoV-2 infection at M3. Risk factors of laboratory-confirmed SARS-CoV-2 infection at M3 were identified by multivariate logistic regression. Results Among 1,062 HCWs (median [interquartile range] age, 33 [28-42] years; 758 [71.4%] women; 321 [30.2%] physicians), the cumulative incidence of SARS-CoV-2 infection at M3 was 14.6% (95% confidence interval [CI] [12.5; 16.9]). Risk factors were the working department specialty, with increased risk for intensive care units (odds ratio 1.80, 95%CI [0.38; 8.58]), emergency departments (3.91 [0.83; 18.43]) and infectious diseases departments (4.22 [0.92; 18.28]); active smoking was associated with reduced risk (0.36 [0.21; 0.63]). Age, sex, professional category, number of years of experience in the job or department, and public transportation use were not significantly associated with laboratory-confirmed SARS-CoV-2 infection at M3. Conclusion The rate of SARS-CoV-2 infection in frontline HCWs was 14.6% at the end of the first COVID-19 wave in Paris and occurred mainly early. The study argues for an origin of professional in addition to private life contamination and therefore including HCWs in the first-line vaccination target population. It also highlights that smokers were at lower risk. Trial registration: The study has been registered on ClinicalTrials.gov: NCT04304690 first registered on 11/03/2020.


Subject(s)
COVID-19 , Communicable Diseases
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.21.21253498

ABSTRACT

The 501Y.V2 and the 501Y.V1 SARS-CoV-2 variants emerged and spread rapidly into the world. We analysed the RT-PCR cycle threshold values of 643 nasopharyngeal samples of COVID-19 patients at diagnosis and found that the 501Y.V2 variant presented an intermediate viral load between the 501Y.V1 and the historical variants.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21253200

ABSTRACT

BackgroundWith the COVID-19 pandemic, documenting whether health care workers (HCWs) are at increased risk of SARS-CoV-2 contamination and identifying risk factors is of major concern. MethodsIn this multicenter prospective cohort study, HCWs from frontline departments were included in March and April 2020 and followed for 3 months. SARS-CoV-2 serology was performed at month 0 (M0), M1, and M3 and RT-PCR in case of symptoms. The primary outcome was laboratory-confirmed SARS-CoV-2 infection at M3. Risk factors of laboratory-confirmed SARS-CoV-2 infection at M3 were identified by multivariate logistic regression. ResultsAmong 1,062 HCWs (median [interquartile range] age, 33 [28-42] years; 758 [71.4%] women; 321 [30.2%] physicians), the cumulative incidence of SARS-CoV-2 infection at M3 was 14.6% (95% confidence interval [CI] [12.5; 16.9]). Risk factors were the working department specialty, with increased risk for intensive care units (odds ratio 1.80, 95%CI [0.38; 8.58]), emergency departments (3.91 [0.83; 18.43]) and infectious diseases departments (4.22 [0.92; 18.28]); active smoking was associated with reduced risk (0.36 [0.21; 0.63]). Age, sex, professional category, number of years of experience in the job or department, and public transportation use were not significantly associated with laboratory-confirmed SARS-CoV-2 infection at M3. ConclusionThe rate of SARS-CoV-2 infection in frontline HCWs was 14.6% at the end of the first COVID-19 wave in Paris and occurred mainly early. The study argues for an origin of professional in addition to private life contamination and therefore including HCWs in the first-line vaccination target population. It also highlights that smokers were at lower risk. Key messagesO_LIDuring the first epidemic wave, 14.6% of 1,062 first-line Health Care Workers had a positive serology and/or RT-PCR test for SARS-CoV-2. C_LIO_LIMost infections occurred early C_LIO_LIRisk was increased by working in infectious diseases (OR 4.22, 95% confidence interval [0.92; 18.28]), emergency (3.91 [0.83; 18.43]) and intensive care units (1.80, [0.38; 8.58]) C_LIO_LIBeing an active smoker was protective (0.36 [0.21; 0.3]). C_LI


Subject(s)
COVID-19
10.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3781650

ABSTRACT

Background: With the COVID-19 pandemic, documenting whether health care workers (HCWs) are at increased risk of SARS-CoV-2 contamination and identifying risk factors is of major concern.Methods: In this multicenter prospective cohort study, HCWs from COVID-19 frontline departments were included in March and April 2020 and followed for 3 months. SARS-CoV-2 serology was performed at month 0 (M0), M1, and M3 and RT-PCR in case of symptoms. The primary outcome was laboratory-confirmed SARS-CoV-2 infection (positive serology and/or positive RT-PCR result) at M3. Secondary outcomes were positive serology for SARS-CoV-2 at M0, M1 and M3. Risk factors of laboratory-confirmed SARS-CoV-2 infection at M3 were identified by multivariate logistic regression.Findings: Among 1,062 HCWs (median [interquartile range] age, 33 [28-42] years; 758 [71.4%] women; 321 [30.2%] physicians), the cumulative incidence of SARS-CoV-2 infection at M3 was 14.6% (95% confidence interval [CI] [12.5; 16.9]). Seroprevalence at M0, M1, and M3 was 5.9% [4.7; 7.5], 12.9% [10.9; 15.1] and 13.0% [11.1; 15.2], respectively. Risk factors were the working department specialty, with increased risk for intensive care units (odds ratio 1.80, 95%CI [0.38; 8.58]), emergency departments (3.91 [0.83; 18.43]) and infectious diseases departments (4.22 [0.92; 18.28]); active smoking was associated with reduced risk (0.36 [0.21; 0.63]). Age, sex, professional category, number of years of experience in the job or department, and public transportation use were not significantly associated with laboratory-confirmed SARS-CoV-2 infection at M3.Interpretation: The rate of SARS-CoV-2 infection in frontline HCWs was 14.6% at the end of the first COVID-19 wave in Paris and occurred mainly early. Seroprevalence in May was higher than in the general population. The study argues for an origin of professional in addition to private life contamination and therefore including HCWs in the first-line vaccination target population. It also highlights that smokers were at lower risk.Trial Registration: The study is registered on ClinicalTrials.gov: NCT04304690Funding Statement: The sponsor of the study was Assistance Publique-Hôpitaux de Paris (AP-HP), with study management by URC Pitié-Salpêtrière. This study was funded by the French Ministry of Health (Programme Hospitalier de Recherche Clinique) and the French Agency for Research (Fond d’amorçage de l’Agence National pour la Recherche).Declaration of Interests: None to declare. Ethics Approval Statement: The SEROCOV study was approved by the ethics committee (CPP Sud-Ouest et Outre-Mer I, approval no. 2-20-023 id7257) and all participants signed informed consent before inclusion.


Subject(s)
COVID-19 , Communicable Diseases
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.24.427939

ABSTRACT

SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells. It has been reported that the UK and South African strains may have higher transmission capabilities, eventually due to amino acid substitutions on the SARS-CoV-2 Spike protein. The pathogenicity seems modified but is still under investigation. Here we used the experimental structure of the Spike RBD domain co-crystallized with part of the ACE2 receptor and several in silico methods to analyze the possible impacts of three amino acid replacements (Spike K417N, E484K, N501Y) with regard to ACE2 binding. We found that the N501Y replacement in this region of the interface (present in both UK and South African strains) should be favorable for the interaction with ACE2 while the K417N and E484K substitutions (South African) would seem unfavorable. It is unclear if the N501Y substitution in the South African strain could counterbalance the predicted less favorable (regarding binding) K417N and E484K Spike replacements. Our finding suggests that, if indeed the South African strain has a high transmission level, this could be due to the N501Y replacement and/or to substitutions in regions outside the direct Spike-ACE2 interface.


Subject(s)
Severe Acute Respiratory Syndrome
12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.14.20173393

ABSTRACT

It is currently unknown whether acquired immunity to common alpha- and beta-coronaviruses provides cross-protection against SARS-CoV-2. In this study, we found that certain patient sera and intravenous immunoglobulins (IVIG) collected prior to the COVID-19 outbreak were cross-reactive to SARS-CoV-2 full-length Spike, S2 domain, and nucleoprotein. However, their presence did not translate into neutralizing activity against SARS-CoV-2 in vitro. Importantly, we detected serum IgG reactivity to common coronaviruses in the early sera of patients with severe COVID-19 before the appearance of anti-SARS-CoV-2 antibodies. Collectively, the results of our study indicate that pre-existing immunity to common coronaviruses does not confer cross-protection against SARS-CoV-2 in vivo.


Subject(s)
COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.29.179184

ABSTRACT

BackgroundRT-PCR testing is crucial in the diagnostic of SARS-CoV-2 infection. The use of reliable and comparable PCR assays is a cornerstone to allow use of different PCR assays depending on the local equipment. In this work, we provide a comparison of the Cobas(R) (Roche) and the RealStar(R) assay (Altona). MethodsAssessment of the two assays was performed prospectively in three reference Parisians hospitals, using 170 clinical samples. They were tested with the Cobas(R) assay, selected to obtain a distribution of cycle threshold (Ct) as large as possible, and tested with the RealStar assay with three largely available extraction platforms: QIAsymphony (Qiagen), MagNAPure (Roche) and NucliSENS-easyMag (BioMerieux). ResultsOverall, the agreement (positive for at least one gene) was 76%. This rate differed considerably depending on the Cobas Ct values for gene E: below 35 (n = 91), the concordance was 99%. Regarding the positive Ct values, linear regression analysis showed a determination correlation (R2) of 0.88 and the Deming regression line revealed a strong correlation with a slope of 1.023 and an intercept of -3.9. Bland-Altman analysis showed that the mean difference (Cobas(R) minus RealStar(R)) was + 3.3 Ct, with a SD of + 2.3 Ct. ConclusionsIn this comparison, both RealStar(R) and Cobas(R) assays provided comparable qualitative results and a high correlation when both tests were positive. Discrepancies exist after 35 Ct and varied depending on the extraction system used for the RealStar(R) assay, probably due to a low viral load close to the detection limit of both assays.


Subject(s)
COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.03.20119925

ABSTRACT

France was one of the first countries to be reached by the COVID-19 pandemic. Here, we analyse 196 SARS-Cov-2 genomes collected between Jan 24 and Mar 24 2020, and perform a phylodynamics analysis. In particular, we analyse the doubling time, reproduction number (Rt) and infection duration associated with the epidemic wave that was detected in incidence data starting from Feb 27. Different models suggest a slowing down of the epidemic in Mar, which would be consistent with the implementation of the national lock-down on Mar 17. The inferred distributions for the effective infection duration and Rt are in line with those estimated from contact tracing data. Finally, based on the available sequence data, we estimate that the French epidemic wave originated between mid-Jan and early Feb. Overall, this analysis shows the potential to use sequence genomic data to inform public health decisions in an epidemic crisis context and calls for further analyses with denser sampling.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL